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Abstract

A reliable stereo algorithm is critical for many robotics
applications. But textureless and specular regions can eas-
ily cause failure by making feature matching difficult. Un-
derstanding whether an algorithm is robust to these haz-
ardous regions is important. Although many stereo bench-
marks have been developed to evaluate performance, it is
hard to quantify the effect of hazardous regions in real im-
ages because the location and severity of these regions are
unknown. In this paper, we develop a synthetic image gen-
eration tool enabling to control hazardous factors, such as
making objects more specular or transparent, to produce
hazardous regions at different degrees. The densely con-
trolled sampling strategy in virtual worlds enables to effec-
tively stress test stereo algorithms by varying the types and
degrees of the hazard. We generate a large synthetic im-
age dataset with automatically computed hazardous regions
and analyze algorithms on these regions. The observations
from synthetic images are further validated by annotating
hazardous regions in real-world datasets Middlebury and
KITTI (which gives a sparse sampling of the hazards). Our
synthetic image generation tool is based on a game engine
Unreal Engine 4 and will be open-source along with the
virtual scenes in our experiments. Many publicly available
realistic game contents can be used by our tool to provide
an enormous resource for development and evaluation of
algorithms.

1. Introduction

Stereo algorithms benefit enormously from bench-

marks [29]. They provide quantitative evaluation to encour-

age competition and track progress. Despite great progress

over the past years, many challenges still remain unsolved,

such as transparency, specularity, lack of texture and thin

objects. These image regions are called hazardous re-

gions [40] because they are likely to cause the failure of an

algorithm. These regions are sometimes small, uncommon

∗Indicates equal contributions.

Figure 1. Different levels of specularity of the TV, from top to

bottom are input image, disparity estimation and error compared

with ground truth, the error is only computed for the specular re-

gions. The visual difference in the first row is subtle, but is a very

big challenge for state-of-art methods [4]. Best seen in color.

and do not have a big impact on overall performance, but

critical in the real world. For example, a street light is a thin

object and covers a small region of an image, but missing it

could be a disaster for autonomous driving.

Images in the real world contain different degrees of haz-

ardous factors, for example, images in KITTI dataset [19]

contain specular windshields or dark tunnels. In order to

better study algorithm robustness, images were captured

on extreme weather conditions [18] or through render-

ing [24, 27]. But these images can only be sparse samples

of different hazardous degrees. Even though it is possible

to collect a huge dataset with enormous degrees of different

hazards, the size of it would be very large making labeling

hazardous regions of these images prohibitively expensive.

To address the problem of thoroughly testing stereo al-

gorithms, we develop a data generation tool for researchers

to precisely control hazardous factors, e.g. material proper-

ties, of a virtual scene and produce their own images. For

example, in Fig. 1, we use it to vary the degree of specular-

ity and show how this impacts the performance of a state-of-

art stereo algorithm [4]. More generally, our approach en-

ables us to follow the standard strategy in scientific research

which changes variables separately and systematically and

study their impact.
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In particular, we use this technique in our paper to study

the relationship between hazardous factors and algorithm

performance to understand the robustness of an algorithm.

Adversarial attack [35, 23] is another popular approach to

understand model robustness. It requires the model to be

differentiable and is mostly applied to deep neural net-

works. Since the hazardous factors are well understood in

binocular stereo [40], we are able to study model robustness

by controlling the hazardous factors which is more system-

atical.

In Fig. 1, the small perturbation of images is done

by changing material property, instead of from back-

propagation, this perturbation is easy to find and be vali-

dated in the real world. The discovery from synthetic im-

ages can be validated using real images, and this validation

only requires a small amount of test images (hence avoiding

the need for excessive annotation of real images). In our di-

agnosis experiment, after analyzing the impact of individual

hazardous factor, we also validate our result on real-world

datasets with annotated images.

In this paper, we use our synthetic image generation tool

to study the effect of four important hazardous factors on

stereo algorithms. These hazardous factors are chosen to

violate some of the basic assumptions of traditional stereo

algorithms. For example, specular and transparent surfaces

violate the brightness consistency constraint, which assume

that the intensity properties of corresponding points are sim-

ilar (because specularity means that the intensity of a sur-

face point will depend on the viewpoint). Although these

hazardous factors are well-known to the community, there

have been few attempts at quantitative evaluation of the im-

pact of individual factor due to challenges of annotating

these factors. We were inspired by the theoretical frame-

work to analyze hazardous factors proposed by Zendel et
al. [40], but their framework requires a lot of manual anno-

tation of hazardous regions of images. Our tool can produce

these hazardous regions masks automatically, making their

theoretical framework practical.

To summarize, we develop a data generation tool called

UnrealStereo and use it to stress test stereo algorithms. The

main contributions of our paper are as follows: Firstly,

we provide a tool enabling researchers to control the haz-

ardous factors in a virtual environment to analyze stereo

algorithms. Secondly, hazardous regions are automatically

determined in our framework, making the theoretical frame-

work in [40] practical. Third, we control the hazardous fac-

tors to show the characteristics of different stereo methods

and validate our result on annotations of Middlebury and

KITTI dataset. Our tools are open source and will be made

available to the community.

2. Related Work

2.1. Robustness Evaluation for Stereo Vision

Many stereo datasets have been created for training

and evaluating stereo algorithms. The Middlebury stereo

dataset [29, 30, 11, 28] is a widely used indoor scene

dataset, which provides high-resolution stereo pairs with

nearly dense disparity ground truth. The KITTI stereo

dataset [6, 19] is a benchmark consisting of urban video

sequences where semi-dense disparity ground truth along

with semantic labels are available. Tanks and Temples [14]

and ETH3D [31] are proposed recently as benchmarks for

multi-view stereo. Besides these most commonly used

ones, [39] makes a detailed summary of existing stereo

datasets. Due to demand of complex equipment and ex-

pensive human labor, real-world datasets usually have rel-

atively small sizes. And the uncertainty in measurements

imposes a constraint on the ground truth accuracy of real-

world datasets. Furthermore, it is not easy to control haz-

ardous factors in real-world settings.

Many stereo benchmarks provide scene variation to un-

derstand the robustness of stereo algorithms. Middle-

bury [11, 28] provide scenes with varying degrees of illumi-

nation and exposure. Neilson et al. [22] provide synthetic

data with varying texture, levels of noise and baselines.

Tsukuba dataset [24] provides the same synthetic video

scene with four different illuminations. In the HCI/Bosch

robustness challenge [18], images on challenging weather

were captured. In order to test algorithm in different con-

ditions in a controlled way, lab setup based on toys and

robotics arm is created [2] to control hazardous factors, but

the images are very different from normal conditions. [20]

evaluated the robustness of stereo algorithms against differ-

ing noise parameters. Haeusler et al. [9] designed cases for

typical stereo failure using non-realistic synthetic 2D pat-

terns without an underlying 3D scene.

Taking the average of pixel errors at full image is not

enough for performance evaluation [15]. [29] proposes re-

gion specific evaluations for areas of textureless, disparity

discontinuities and occlusion. The HCI stereo metrics [12]

focus on disparity discontinuities, planar surfaces, and fine

structures. CV-HAZOP [40] proposes the idea of analyzing

hazardous factors in an image. Their method requires man-

ually annotating risk factors, such as specular areas, from

images, which is difficult to perform and hard to scale up.

Our synthetic pipeline can automatically identify these haz-

ardous regions, enables large-scale analysis. The ability to

control the severity of hazardous factors also helps us to

better understand the weakness of an algorithm.

2.2. Synthetic Dataset for Computer Vision

Synthetic data has attracted a lot of attention recently,

because of the convenience of generating large amounts of
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images with ground truth. And the progress of computer

graphics makes synthesizing realistic images much easier.

Synthetic data have been used in stereo [24, 3, 9, 27, 17],

optical flow [1, 3], detection [25, 33] and semantic seg-

mentation [26, 27, 5, 34]. Images and ground truth are

provided in these datasets, but the virtual scenes are not

available to render new images or change the properties

of these scenes. Instead of constructing proprietary virtual

scenes from scratch, we use game projects that are pub-

licly available in the marketplace. Our tool enables tweak-

ing virtual scenes, e.g. by varying the hazardous factors in

virtual experiments, to generate more images and ground

truth. Many virtual scenes constructed by visual artists in

the marketplace can be used. Unlike Sintel [3] and Flyingth-

ing3D [17], our approach utilizes more realistic 3D models

arranged in real-world settings.

3. Hazardous Factor Analysis
Most of stereo algorithms can be formulated in terms of

minimizing an objective function w.r.t disparity d,

E(d) =
∑

p

Ed(d(p)) + λ
∑

(p,q)∈C
Es(d(p), d(q)) (1)

where the data term Ed usually represents a matching cost

and the smoothness term Es encodes context information

within a support region C of pixel p (q is a pixel in C).

Local stereo methods [7, 16] do not have a smoothness term

and utilize only local matching cues. Global methods [10,

36, 38, 4] incorporate the smoothness priors on neighboring

pixels or superpixels in the smoothness term.

The success of these methods relies on some basic as-

sumptions hold for the scene they encounter. First, to

do correspondence between binocular image pairs, image

patches of the projection of the same surface should be sim-

ilar which requires Lambertian surface assumption and the

single image layer assumption. Second, the local surface

should be well-textured for matching algorithms to extract

feature. Third, the smoothness term in global method func-

tions under the assumption that the disparity vary slowly

and smoothly in space. However, these assumptions can

easily be broken in real world scenarios. For example, the

first assumption does not hold for specular surface which is

not Lambertian and transparent surfaces which would cre-

ate multiple image layers. Textureless objects are every-

where such as white walls and objects under intense light-

ing. Besides, smoothness assumption does not hold for re-

gions with many jumps in disparity, e.g. fences and bushes.

Since the aforementioned factors often break the as-

sumptions of most stereo methods, we call them hazardous
factors following [40]. Special efforts have been made to re-

solve these difficulties in recent years. Yang et al. [37] pro-

posed an approach which replaces estimates in textureless

regions with planes. Nair et al. [21] derive a data term that

explicitly models reflection. Güney et al. [8] leverage se-

mantic informations and 3D CAD models to resolve stereo

ambiguities caused by specularity and no texture. An end-

to-end trained DCNN based algorithm [17] performs well

on specular regions of KITTI stereo 2015 after finetuning

on the training set.

Evaluating stereo algorithms under different hazardous

factors on real data is highly inconvenient, because haz-

ardous regions 1) require annotation by human labor and

2) can hardly be controlled. To this end, we develop a syn-

thetic data generation tool for systematic study of hazardous

factors.

For the rest of this section, we first describe the data gen-

eration tool UnrealStereo. Then we vary the hazardous fac-

tors to produce hazardous regions to stress test state of the

art stereo algorithms. Finally, hazardous regions are com-

puted for images rendered from realistic 3D scenes to ana-

lyze the impact of each hazardous factor.

3.1. UnrealStereo Data Generation Tool

Game and movie industries are able to create realistic

computer graphics images, but it is expensive and techni-

cally challenging for researchers to do so. Professional tools

such as Blender and Maya are difficult to use because 1)

they are created for professional designers with many ir-

relevant features to research, mastering these tools requires

weeks to months experience, 2) they are designed for ren-

dering images and require a significant engineering effort to

generate correct ground truth for vision tasks, 3) 3D models

for these tools are either expensive or of low-quality.

UnrealStereo solves these problems by providing an

easy-to-use tool. The tool is designed for multi-view vision

data generation and diagnosis for researchers. It is based on

Unreal Engine 4 (UE4), an open-source 3D game engine.

UnrealStereo supports multiple camera. Users can place

virtual cameras in a virtual scene according to their speci-

fication. An example is shown in Fig. 3. It generates im-

ages and ground truth synchronously from multiple cam-

eras, which enables capturing a dynamic scene. Our opti-

mized code makes data generation very fast and only a small

overhead is added to the rendering. For a two-camera setup,

the speed can reach 30 - 60 FPS depending on complexity

of the scene. The speed is important for large scale data

generation and interactive diagnosis.

The depth generation from Unreal Engine is improved

based on [25]. The depth is stored as floating point in-

stead of 8-bit integer to preserve precision. The depth of

transparent objects is missing from the depth buffer of UE4,

this issue is fixed to produce accurate depth for transparent

objects. Dynamic scenes and visual effects are supported.

Many scenes were tested to ensure compatibility.

For the stereo analysis, we created a two-camera sys-
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Figure 2. UnrealStereo is a synchronized multiple camera system. From left to right are a two-camera system used in our stereo experiment,

cameras mounted on a virtual car and a 16 camera system surrounding a virtual human head.

Figure 3. From left to right are rendered images, object in-

stance mask, material information (green shows transparent and

red shows specular region).

tem. The second camera automatically follows the first one

and keeps relative position fixed. The distance between two

cameras can be adjusted to simulate different baseline. The

image and depth are captured from the 3D scenes for both

two cameras, along with other extra information shown in

Fig. 3. Given a rectified image pair, the goal of stereo

matching is to compute the disparity d for each pixel in the

reference image. The disparity is defined as the difference

in horizontal location of a point in the left image and its cor-

responding one in the right. Then the conversion between

depth z and disparity d is shown in the following relation

z = fB
d . where f is the focal length of the camera and B is

the baseline that is the distance between the camera centers.

The correctness of disparity is verified by warping the ref-

erence image according to its disparity map and comparing

it with the target image.

UnrealStereo supports hazardous factor control, such as

adjusting material property, which enables the diagnosis ex-

periment in Sec. 3.2. The hazardous factor control can be

done with Python, through the communication layer pro-

vided by UnrealCV [25]. This makes it possible to generate

various cases to stress test an algorithm.

The 3D scenes used in this paper are created by 3D mod-

elers trying to mimic real world configuration. This is im-

portant for two reasons: 1) many diverse challenging cases

can prevent over-fitting which usually happens in a toy en-

vironment. 2) the semantic information provides the op-

portunity to solve low level vision problems with high level

semantic cues [8]. The physics based material system of

UE4 [13] not only makes the rendering realistic, but also

enables UnrealStereo to tweak material parameters to cre-

ate hazardous challenges.

Unreal Engine uses a rasterization renderer combined

with off-line baked shadow map to produce realistic lighting

effect. Recently announced V-ray plugin provides another

powerful ray tracing renderer for UE4. Our tool can sup-

port both renderers. Due to the lack of 3D models for the

ray tracing renderer, our synthetic images are mainly pro-

duced by the rasterization renderer.

3.2. Controling Hazardous Factors

The UnrealStereo tool we developed is able to produce

hazardous cases in the virtual world with lighting and mate-

rial controlled, making it tractable to conduct precise evalu-

ation. As a demonstration, we establish four virtual scenes

with high reality each of which includes one factor. Stereo

image pairs are rendered from various viewpoints together

with dense disparity groundtruth. Fig. 4 shows the snap-

shots of the four scenes.

Specularity Shown in Fig. 4(a), the major specular object

in the scene is the TV screen. The specularity is controlled

by the roughness of metallic materials.

Texturelessness In Fig. 4(b), the wall and the ceiling in the

room are made textureless because they are the most com-

mon textureless objects in real world. To achieve texture-

lessness while keep reality, we do not directly remove the

material of the walls but adjust the scale property of the

parameterized texture. Various viewpoints are used from

which the walls form slanted planes, raising challenges to

some less intricate regularizers or smoothness term.

Transparency In Fig. 4(c), we placed a transparent sliding

door in a room. By adjusting the opacity property of the

glass on the door, we are able to create different levels of

transparency.

Disparity Jumps In the disparity jumps case(Fig. 4(d)),

thin objects such as bamboos, fences and plants of various

sizes and poses are placed in the scene, which easily form

frequent disparity discontinuities distributed within a small

region.

One of the advantage of our tool is the ability to vary

the extent of hazard while keeping the rest of the scene in-

tact. We isolate the hazardous factors and focus on one at a

time. There are certainly other hazardous factors which can
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(a) Specularity (b) Texturelessness (c) Transparency (d) Disparity jumps

Figure 4. From (a) to (d) are cases we designed to test algorithms. They are specularity, lack of texture, transparency and disparity jump.

In (a), the screen of a TV is set to be specular. In (b), the wall and the ceiling in the room are made textureless. In (c), the sliding door has

a transparent surface. In (d), objects such as bamboos, fences and plants give frequent disparity discontinuities.

be controlled in our framework. For example, the area of

textureless regions is crucial to stereo methods because as

the textureless region gets larger, it becomes more difficult

for the smoothness term to use context information such as

the disparity of neighboring well-textured objects.

Because synthetic and real data are in different domain,

after receiving the evaluation results on virtual scenes, it is

important to verify them on real-world dataset. To this end,

we manually annotated corresponding hazardous regions on

Middlebury 2014 [28] and KITTI 2015 [19]. Details and

results for evaluation on these cases are presented in Sec-

tion 4.1.

3.3. Automatic Hazardous Region Discovery

Manually designed hazardous cases are important for un-

derstanding an algorithm. Furthermore, our tool enables us

to tweak many realistic virtual scenes to perform large-scale

evaluation. The popularity of virtual reality provides a lot of

high quality virtual environments, which can be purchased

with a fair price (less than $50) or even free.

Our rendering process produces extra information be-

yond depth information including object instance mask and

material information. Using these extra information, we can

locate these hazardous regions mentioned in Section 3.2.

Fig. 5 shows an example of these masks. For each object,

we annotate its material information only once, before ren-

dering process, then no more human effort is required to

obtain corresponding masks. Textureless regions can also

be computed from image using image gradient and dispar-

ity jumps regions can be computed given accurate disparity

ground truth [32, 29]. Compared with them, our method is

a generic way that covers more hazardous factors.

We establish a large dataset using six publicly available

game scenes. They are a small indoor room, a large temple

scene, three houses and one block of street. There are dif-

ferent layouts in these houses such as living room, kitchen

and bathroom. The largest scene contains more than 1,000

objects while hundreds on average, including reflective ob-

jects, such as mirrors, bathtubs and metal statues, transpar-

ent objects such as glass, glass-doors and windows. Snap-

Figure 5. Binary masks that we compute from object mask and

material property. From top left in clockwise are: mask for non-

occluded region, object boundary region, specular region and tex-

tureless region. Best seen in color.

shots of these scenes can be seen in Fig. 6. Specifically, for

each scene we record a video sequence that covers differ-

ent viewpoints in the environment, which results in 10,825

image pairs in total.

A unique feature of our dataset is the hazardous factors

of virtual worlds can be controlled and more challenging

images can be produced. Instead of just providing an image

dataset with fixed number of images, we provide a synthetic

image generation tool. This tool can be used to design new

hazardous cases, generate more images. More game scenes

from the marketplace can be used in experiment.

4. Experiment
We choose five types of state-of-the-art stereo algorithms

to evaluate on the challenging testing data we rendered.

They are representatives of local methods ELAS [7] and lo-

cal method with spatial cost aggregation CoR [4], global

methods on pixel-level MC-CNN [38] and superpixel-level

SPS-St [36] as well as end-to-end CNN based method Disp-

NetC [17]. Implementation from the authors of these meth-

ods are adopted. For model weights of the MC-CNN, we

use the model used in their submission to KITTI. For Disp-
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Figure 6. The six virtual scenes we use in our experiments, from left to right are image, depth and object mask. These virtual scenes are

purchased from Unreal Engine marketplace.

NetC, the original model trained on the synthetic dataset

FlyingThings3D [17] is used. Two error metrics, i.e. bad-

pixel percentage (BadPix) and end-point error (EPE), are

used in evaluation.

4.1. Evaluation on Controlled Hazardous Levels

We use 10 viewpoints for each of the hazardous cases we

designed, i.e. specular, semi-transparent, textureless, and

disparity jumps, covering both fronto-parallel and slanted

surfaces. At each viewpoint of hazardous scenes except

disparity jumps case, we start from the easiest parameter

settings that are roughest, opaque or well-textured and ad-

just the corresponding parameter step by step to increase

the extent of hazard, creating different levels of correspond-

ing hazard per viewpoint. We exclude occluded regions and

only evaluate hazardous regions identified by method de-

scribed in Section 3.3. Results are shown in Fig. 7 and Ta-

ble 1. As a reference, overall performance on Middlebury

and KITTI is shown in Table. 1

The ability to control hazardous factors enables us to an-

alyze a stereo algorithm from different perspectives. We can

study not only the overall performance, but also the robust-

ness to different hazardous cases. Here are some interesting

observations from the experiment results.

First, methods which perform better in general are not

always doing well on hazardous regions. For example, the

state-of-the-art method MC-CNN achieves the best overall

scores on both real-world datasets and our synthetic dataset

(see Table 3), but it is not the best for many hazardous cases.

We compute the correlation coefficients of the performance

of these methods for hazardous factors at high level and

their overall performance in EPE. For specular, textureless,

transparent and disparity jumps factors, they are 0.25, 0.41,

0.43, 0.63 respectively. Therefore, the overall scores can-

Figure 7. The influence of texturelessness, specularity and trans-

parency at different levels in terms of bad-pixel percentage and

end-point error. The level of each hazardous factor is controlled

by parameters for corresponding materials. Each data point repre-

sents an average over 10 viewpoints.

not reflect the characteristics of an algorithm on hazardous

regions.

Second, different regularization methods have big im-

pact on the robustness. The cost aggregation on suitable

regions or regularization on superpixels can to some extent

reduce the vulnerability to matching ambiguities. As shown

in Fig. 7, CoR and SPS-St exhibit high robustness as they

outperform other methods for specularity and transparency
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Specular Textureless Transparent Jumps Overall

High Med MB KITTI High Med MB KITTI Ours KITTI Ours MB KITTI

>3px Error (%)

ELAS [7] 64.5 39.1 57.9 35.9 79.5 47.6 67.4 37.6 71.4 43.3 46.4 19.5 9.3

SPS-St [36] 28.5 15.3 36.5 23.0 79.8 20.9 58.3 15.0 31.6 44.6 42.3 15.8 5.1

CoR [4] 27.6 16.1 30.5 23.4 79.9 20.0 59.0 14.3 30.9 44.2 42.1 15.4 4.9

MC-CNN-fst [38] 59.6 45.2 37.2 21.2 89.5 39.7 49.1 17.4 46.4 42.1 42.3 14.6 4.5
DispNetC [17] 81.5 56.7 82.4 36.8 80.9 81.0 31.8 32.0 86.5 58.2 63.4 23.5 10.7

End-point Error (px)

ELAS [7] 22.39 12.18 7.54 4.07 24.44 9.64 7.95 6.43 13.76 5.29 11.95 4.01 1.55

SPS-St [36] 11.69 6.37 5.47 2.71 24.29 5.53 8.12 1.95 7.04 5.03 11.21 3.57 1.23

CoR [4] 11.32 6.50 4.31 2.61 19.89 3.90 8.05 1.82 6.88 5.24 11.15 3.35 1.11

MC-CNN-fst [38] 23.72 17.73 5.19 2.62 22.96 7.84 8.00 3.16 10.34 5.04 11.23 3.18 1.10
DispNetC [17] 27.15 17.12 8.96 3.42 15.30 15.33 2.66 3.80 16.03 6.79 10.01 3.25 1.59

Table 1. Performance on hazardous regions on images generated by UnrealStereo and corresponding regions on Middlebury (MB) and

KITTI training set in bad-pixel percentage (BadPix) and end-point error (EPE). For our data, Hazardous levels of medium (Med) and high

(High) are presented for textureless and specular factors. Only masked hazardous regions are evaluated.

Spec. Txtl. Tran. Jumps

KITTI 0.55 0.16 0.75 -

MB 0.76 0.87 - -

Table 2. Correlation between performance on our dataset and

real-world datasets on hazardous regions in EPE.

factors at all levels under both metrics. Intuitively, large

support regions also helps regularize the result on texture-

less regions, which is confirmed by the leading performance

of CoR and SPS-St for texturelessness.

Third, the ability to precisely control the hazardous fac-

tors enable us to discover more characteristics of the algo-

rithms than using standard benchmarks. As shown in the

curves for textureless in Fig. 7, DispNetC exhibits an early

insensitivity to further texture weakening, which may result

from a different way to incorporate context, i.e. through

large receptive field. Without controlling hazardous factors,

it is hard to discover these kinds of information.

From the experiments for disparity jumps, we find that

the global methods evaluated here still suffer a lot on these

areas even though they have taken depth discontinuity into

consideration. The evaluated methods perform bad on dis-

parity discontinuity regions as shown in Table 1. For Bad-

Pix metric, CoR is slightly better than others while Disp-

NetC achieves the best result in EPE. The reason that Disp-

NetC outperforms others in EPE could be that it does not

explicitly impose smoothness constraints, which helps to

avoid erroneous over-smooth.

4.2. Comparison with Middlebury and KITTI

To verify our result, we annotate specular and texture-

less regions on Middlebury 2015 and KITTI 2015 training

set and transparent regions on the latter (Note that the ob-

jects in Middlebury are rarely transparent). On Middlebury

the annotation and evaluation are performed at quarter size

of the original images. Disparity jumps is not included here

because the missing ground truth for many pixels on both

datasets makes disparity discontinuity computation inaccu-

rate. To annotate hazardous regions of these datasets, anno-

tators are asked to mask corresponding regions with Photo-

shop selection tool and examples are shown in Fig 8.

Figure 8. Hazardous regions annotation on KITTI (left) and Mid-

dlebury (Right) used to validate the results on synthetic data. Spec-

ular and textureless regions are encoded by red and green color.

Performance on annotated hazardous regions is consis-

tent with our synthetic dataset. As shown in Table 2, there

is a strong correlation between performance on our dataset

and real-world datasets. For textureless regions on KITTI,

the correlation coefficient is 0.16 at high level and 0.54 for

medium level, which indicates that KITTI shares similar

statistics for textureless regions with our dataset at medium

level.

As shown in Table 1, MC-CNN does not outperform oth-

ers on hazardous regions on Middlebury and KITTI, which

verifies the first conclusion in Section 4.1 that methods

which perform better in general are not always doing well
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Full Non-Occluded Specular Textureless Transparent Disparity jumps

EPE >3px EPE >3px EPE >3px EPE >3px EPE >3px EPE >3px

ELAS [7] 11.80 31.6 8.81 25.1 8.18 22.6 14.04 56.0 11.37 42.2 10.21 43.0

SPS-St [36] 7.93 23.4 5.16 16.3 6.46 16.3 10.74 44.2 9.94 36.9 6.72 30.7

CoR [4] 7.74 24.2 4.97 16.9 7.07 24.4 8.34 45.8 10.07 37.1 6.70 32.0

MC-CNN-fst [38] 7.64 22.2 4.62 14.5 6.94 17.1 7.62 41.2 10.52 37.0 6.56 30.5
DispNetC [17] 7.98 34.7 5.96 28.4 7.84 29.3 6.02 37.3 12.76 52.7 6.94 44.8

Table 3. Performance of state-of-the-art stereo algorithms on test set of rendered dataset. Errors in full image, non-occluded, specular,

textureless, transparent and disparity jumps regions are included. Both end-point error (EPE) and bad-pixel percentage (> 3px) are

evaluated by applying the masks proposed in Section 3.3.

on hazardous regions. The second conclusion also holds

true here. Since global methods, e.g. SPS-St and MC-CNN,

and local methods with large support regions, e.g. CoR, ob-

tain lower errors on specular and transparent regions than

other methods, they are more robust to these hazardous fac-

tors.

We also find that Middlebury and KITTI have different

statistics. For example, on textureless regions, DispNetC

performs the best on Middlebury while on KITTI it does

not. The analysis of DispNetC in Sec.4.1 shows it has dif-

ferent performance for different levels of texturelessness.

Since Middlebury and KITTI are both real-world dataset

and the level of hazardous factors is unknown and not con-

trollable, the performance for DispNetC can be different.

According to Fig. 7, it is possible that the annotated tex-

tureless regions on Middlebury are at the higher level while

those on KITTI is more towards the lower level.

4.3. Evaluation on Automatically Generated Haz-
ardous Regions

We evaluate these algorithms on a testing set including

484 stereo image pairs which are randomly sampled from

the 10k images from the six virtual scenes. Hazardous

regions are generated automatically. The average perfor-

mance on full, non-occluded and four hazardous regions are

shown in Table. 3.

The top performance of SPS-St and CoR on specular and

transparent regions verifies the analysis in Section 4.1 that

non-local regularization using large support regions would

reduce the influence of matching ambiguity. That DispNetC

outperforms others on textureless region could result from

the level of texturelessness, since Fig. 7 shows that Disp-

NetC is robust on extremely textureless scene.

It is also worthwhile to compare the results with over-

all performance on Middlebury and KITTI in Table. 1. The

correlation coefficients for the performance in EPE between

our dataset and Middlebury and KITTI are 0.61 and 0.91 re-

spectively (Shown in Table 2). The overall errors are higher

on our data. There are two possible causes. One is that the

percentage of hazardous regions on our dataset is larger than

KITTI. The other is that KITTI only provides semi-dense

ground truth, which excludes many hazardous regions, i.e.

the windows of cars.

5. Conclusion

In this paper, we presented a data generation tool Un-

realStereo to generate synthetic images to create a stereo

benchmark. We used this tool to analyze the effect of four

hazardous factors on state-of-the-art algorithms. Each fac-

tor was varied at different degrees and even to an extreme

level to study its impact. We also tested several state-of-

the-art algorithms on six realistic virtual scenes. The haz-

ardous regions of each image were automatically computed

from the ground truth, e.g., the object mask and the material

properties. We found that the state-of-the-art method MC-

CNN [38] outperforms others in general, but lacks robust-

ness in hazardous cases. DCNN based method [17] exhibits

interesting properties due to its awareness of larger context.

We also validated our findings by comparing to results on

the real-world datasets where we manually annotated the

hazardous regions. The synthetic data generation tools en-

ables us to explore many degrees of hazardous factors in a

controlled setting, so that the time-consuming manual an-

notation of real images can be reduced. Manual annotation

will only be needed in a limited (sparse) number of cases in

order to validate the results from synthetic images.

Our data generation tool can be used to produce more

challenging images and is compatible with publicly avail-

able high-quality 3D game models. This makes our tool

capable for many applications other than stereo. In our fu-

ture work, we will extend our platform to include more haz-

ardous factors such as the ratio of occlusion and analyze

more computer vision problems. It is also interesting to

explore the rich ground truth we generate, such as object

mask and material properties. This semantic information

will enable the development of computer vision algorithms

that utilizes high-level knowledge, for example like stereo

algorithms that use 3D car models [8].
Acknowledgement: This work was supported by the Intelligence Ad-

vanced Research Projects Activity (IARPA) via Department of Interior/

Interior Business Center (DOI/IBC) contract number D17PC00345. We

also want to thank the reviewers for providing useful comments.

235



References
[1] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance

of optical flow techniques. International journal of computer
vision, 12(1):43–77, 1994. 3

[2] A. Borji, S. Izadi, and L. Itti. iLab-20M: A large-scale con-

trolled object dataset to investigate deep learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2221–2230, 2016. 2

[3] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation. In

European Conference on Computer Vision, pages 611–625.

Springer, 2012. 3

[4] A. Chakrabarti, Y. Xiong, S. J. Gortler, and T. Zickler. Low-

level vision by consensus in a spatial hierarchy of regions.

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4009–4017. IEEE, 2015. 1,

3, 5, 7, 8

[5] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds

as proxy for multi-object tracking analysis. arXiv preprint
arXiv:1605.06457, 2016. 3

[6] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the KITTI vision benchmark suite. In

Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3354–3361. IEEE, 2012. 2

[7] A. Geiger, M. Roser, and R. Urtasun. Efficient large-scale

stereo matching. In Asian Conference on Computer Vision,

pages 25–38. Springer, 2010. 3, 5, 7, 8

[8] F. Guney and A. Geiger. Displets: Resolving stereo ambigu-

ities using object knowledge. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,

pages 4165–4175, 2015. 3, 4, 8

[9] R. Haeusler and D. Kondermann. Synthesizing real world

stereo challenges. In German Conference on Pattern Recog-
nition, pages 164–173. Springer, 2013. 2, 3

[10] H. Hirschmuller. Accurate and efficient stereo processing by

semi-global matching and mutual information. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages 807–814. IEEE, 2005. 3

[11] H. Hirschmuller and D. Scharstein. Evaluation of cost func-

tions for stereo matching. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages

1–8. IEEE, 2007. 2

[12] K. Honauer, L. Maier-Hein, and D. Kondermann. The HCI

stereo metrics: Geometry-aware performance analysis of

stereo algorithms. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2120–2128, 2015. 2

[13] B. Karis and E. Games. Real shading in unreal engine 4.

Proc. Physically Based Shading Theory Practice, 2013. 4

[14] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun. Tanks

and temples: Benchmarking large-scale scene reconstruc-

tion. ACM Trans. Graph., 36(4):78:1–78:13, July 2017. 2
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